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Stochastic effects in a thermochemical system with Newtonian heat exchange
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We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted
gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemi-
cal reaction and neglecting consumption of reactants. The master equation includes a transition rate for the
thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas
particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle
velocity distribution can be neglected. The transition function for the thermal process admits a continuous
spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential
form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the
Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system
size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality
during the ignition period. The results of the stochastic description are successfully compared with those of
direct simulations of microscopic particle dynamics.
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I. INTRODUCTION

Fluctuations in far-from-equilibrium chemical systems a
a subject of extensive studies due to their effects on non
ear dynamics that are manifested at the macroscopic leve
investigations of stochastic properties, particularly con
nient is the master equation formalism@1–3#, which provides
a description of fluctuations in terms of macroscop
coefficients—like reaction rates or diffusion constants—a
allows us to avoid going into the complexity of underlyin
microscopic dynamics. This mesoscopic approach is well
tablished for reaction-diffusion processes in isothermal s
tems @4#, for which the master equation is extensively a
plied and verified by the results of microscopic simulatio
@5–7#. However, for thermal processes, the mesoscopic tr
ment is much less developed. The master equation has
formulated for energy fluctuations in a system with a u
form temperature gradient@8#, but the result in its explicit
form was inferred only with a reference to the determinis
dynamics. Along the lines applied to the description of d
fusion process, fluctuating energy flows were expresse
terms of local thermodynamic variables. Another model
transport considered was the transfer of mass and energy
diluted gas by the Knudsen mechanism@9,10#. The results
obtained for spatial correlations of temperature in this sim
system were successfully compared with the microsco
simulations@11#. For the fully microscopic level, molecula
dynamics results were reported for oscillatory@12# and ex-
citable @13# thermochemical systems in contact with a th
mostat. A number of studies were also concerned with a
batic chemical systems, but under the adiabatic constr
the thermal state is not independent but is determined c
pletely by chemical conditions.

*Email address: bogn@ichf.edu.pl
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In this paper, we develop a treatment of stochastic effe
in the Newtonian energy exchange. We study, in particu
the Semenov thermochemical system@14#: A dilute gas
closed in a container and subject to energy balance due t
exothermal chemical reaction in the bulk and the Newton
heat transfer through a boundary surface. The temperatu
walls of the container is assumed constant, fixed by an
propriately fast energy exchange with an external thermos
As in the previous studies that focused on the stochastic t
mal effects in chemical systems@9,10#, it is convenient to
consider the simplest feasible reaction scheme

A1A→A1A1heat. ~1!

Following the Semenov approximation, it amounts to negl
the depletion of reactants. In order to justify this approxim
tion, one may regard Eq.~1! as an overall scheme for
two-step process: In a first step, the ground-stateA0 is ex-
cited to a higher-energy stateA by irradiation by an externa
light source or interaction with the boundaries of contain
The energy of excitation is subsequently released in bim
lecular reactive collisions according to the second stepA
1A→A01A1heat. Reaction heat is transformed into tran
lational energy of products. If the activation process is mu
faster than the second step, then the ground-stateA0 pro-
duced in this second step is immediately excited toA. Taking
into account the disparity of time scales of the two steps,
intermediate formA0 may be eliminated from the kinetic
scheme@15#, leading to the overall reaction~1!. Accordingly,
the intermediate speciesA0 is also not considered in the sto
chastic approach. Note that the energy pumping from
exterior acts as a constraint maintaining the system ou
equilibrium. The heat of reaction~1! is dissipated to the ther
mostat in the process of Newtonian cooling. In the Seme
©2001 The American Physical Society08-1
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model, the system is assumed homogeneous. For gas
species, this approximation is justified if the mean free p
is comparable with the size of the system so that the bou
ary layer extends over the whole volume. Then, a part
transfers energy between the wall and any part of the sys
effectively in a single free flight, without energy dissipatio
in intermediate collisions. Under such conditions, even
innermost parts of the system are effectively in direct th
mal contact with the walls of the container. Considering t
rarefied gas system, we neglect the effect of the tempera
jump at the boundary@16#, which must be included in the
continuum description of thermal transfer in the inhomog
neous Semenov system@17#.

In the next section, we derive the master equation for
probability distribution function of temperature of the ga
eous Semenov system. Besides the usual term for the ch
cal reaction, it also includes a specific transition functi
related to the Newtonian heat exchange with the thermo
As any analytical treatment of this equation is extrem
difficult, we resort to Monte Carlo simulations. In Sec. I
we present the method of simulations based on the ma
equation, as well as simulations of the diluted gas system
the microscopic level, which was used to ascertain the de
oped stochastic description. In order to find conditions
which significant stochastic effects can be expected, we c
sider in Sec. IV the qualitative features of the determinis
dynamics of the Semenov system. The results of the
simulation methods for the system in the explosive regi
are presented in Sec. V. Conclusions and the main resul
this study are summarized in the last part of the paper.

II. THE MASTER EQUATION

Stochastic effects in the dynamics of the thermochem
system are related to the statistics of inelastic collisions
particles—either reactive with heat release or associated
accommodation and energy exchange with the walls of
container. Our main assumption is that inelastic collisions
much less frequent than elastic ones, which are thus s
ciently effective to maintain the Maxwellian form of the pa
ticle velocity distribution corresponding to the instantaneo
temperatureT of the system.

Inelastic collisions with the walls of the container contri
ute to energy transfer between the system and the thermo
which is described by a specific, nonstandard term in
master equation. The rate, at which particles strike a
surface of the wall, is given by the flux of particles in th
outward direction at the wall surface. To be concrete, we t
the positivex direction as outward normal to the surfa
element; a particular orientation is not relevant here since
Maxwellian distribution is isotropic. The ratenout(v) of col-
lisions with the wall for particles with velocity aroundv is
then

nout~v!dv5nS m

2pkTD 3/2

vx expS 2
mv2

2kTDdv, vx.0,

~2!

where n denotes the number density of particles. Altern
tively, this equation indicates that particles striking the w
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have a biased Maxwellian velocity distribution, that is t
Maxwellian one scaled by the velocityvx normal to the wall.
It is related to the effect that particles with a higher-veloc
component in thex direction are more susceptible to collid
with the wall. This is exactly the property expressed in t
Boltzmann collision integral: the wall is ‘‘seen’’ by the ga
molecules as a gigantic, immobile particle. The particles
ting the wall are accommodated to the temperatureTw of the
wall with the probability sa , which is a steric factor for
thermal adaptation. Thus,Ssanout(v)dv is a total accommo-
dation rate of particles striking with velocityv the entire
surfaceS of the wall. The accommodated particles are im
mediately emitted from the wall and the distribution of the
velocitiesv8 is given accordingly by the biased Maxwellia
related to the temperatureTw of the wall. The normalized
form of this distribution function is

fw~v8!5
1

2p S m

kTw
D 2

uvx8uexpS 2
mv82

2kTw
D , vx8,0. ~3!

The transition$v→v8% of particle velocity in an inelastic
collision involves~i! accommodation of the particle at th
wall surface and~ii ! its subsequent emission with the corr
sponding final velocity. Consequently, the rate of transitio
w(v→v8) for particle velocities is composed of two factor
the total accommodation rateSsanout(v)dv for particles with
incident velocities aroundv, and the probabilityfw(v8)dv8
that after accommodation the particle emitted from the w
has a velocity aroundv8

w~v→v8!dv dv85Ssanout~v!dv3fw~v8!dv8

5SsanS m

2pkTD 3/2

vx expS 2
mv2

2kTD
3

1

2p S m

kTw
D 2

uvx8uexpS 2
mv82

2kTw
Ddv dv8. ~4!

The transition rate for the system energy fromE to E8 in-
cludes the rates of transitionsw(v→v8) for all combinations
of initial and final velocities that satisfy the energy constra
E2E85(1/2)(mv22mv82). Thus, the rate of energy trans
tions in the Newtonian heat exchange is calculated from
~4! as follows:

we~E→E8!5SsanE
vx.0

S m

2pkTD 3/2

vx expS 2
mv2

2kTD
3E

vx8,0

1

2p S m

2kTw
D 2

uvx8uexpS 2
mv82

2kTw
D

3dS 1

2
~mv22mv82!2~E2E8! Ddv dv8.

~5!

Due to the energy constraint in Eq.~5!, the out- and in-flux
of heat are not independent in the calculation ofwe(E→E8).
Rather, the heat influx from the thermostat arises as a
sponse to the accommodation of energy at the boundar
8-2
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the system, and its magnitude is imposed by the energy
straint. Both of these flux components contribute jointly
ways to a single, elementary energy transitionE→E8. There-
fore, our treatment of stochastic effects in the Newton
heat transfer does not follow the approach applied usuall
diffusion in the master equation@1,4#. In that usual descrip-
tion, adapted previously also to thermal processes@8–10#,
any volume element is treated as an independent sourc
outflux of matter~or energy!, which results in an elementar
transition. Rates of transitions depend then only on lo
thermodynamic variables for the volume element giving r
to the flux, unlikewe(E→E8) in Eq. ~5!, which depends on
both the temperature of the system and the thermostat.
the assumed Maxwellian form of the velocity distributio
temperature is related to the energy of the ideal gas bE
5(3/2)NkT, whereN is the number of particles in the sys
tem. Integration of Eq.~5! yields then the rate of temperatu
transitionDT5T82T in the Newtonian thermal exchange

we~T→T1DT!5SsanS kT

2pmD 1/2 TTw

~T1Tw!3

3S 21

~T1Tw!S 3

2
ND uDTu

TTw

D
3

3

2
NH expS 2

3

2
N

uDTu
T D for DT,0,

expS 2
3

2
N

DT

Tw
D for DT.0.

~6!

The transition function given in Eq.~6! is mostly confined to
the interval2T/N,DT,Tw /N, which corresponds to an
energy portion of the order ofkT (kTw), transferred in a
single inelastic particle-wall collision. IfT.Tw , transitions
with DT,0 are more probable than the opposite ones w
DT.0, and vice versa. This results in the average trend
constitutes the deterministic description of the Newton
heat transfer: the temperatureT of the system tends~at linear
rate in the first approximation! to the thermostat temperatur
Tw . The deterministic dynamics is considered in some de
further in Sec. IV.

The transition functionwe for the Newtonian heat ex
change gives a continuous spectrum of temperature cha
DT, unlike discrete changes of particle numbers involved
standard master equations for reaction-diffusion syste
@1,4#. That usual approach has been adopted in the very
approximation for the master equation with the term
Newtonian cooling@18#. The simplest description consists
assuming discrete temperature jumps of some fixed len
but the frequency of such hopping may only be determin
by matching average rates to the deterministic descrip
@18#. Reference to the deterministic dynamics was also n
essary to obtain the explicit form for rates of thermal flu
tuations in a system with uniform heat flow@8#.

In contrast to the Newtonian heat transfer, exothermal
action ~1! gives discrete transitions ofT, because always a
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fixed portion of energy is released in a reactive collision. T
reaction heatQ results in the increase of temperature by

DTr5Q/ 3
2 Nk. ~7!

The transition rates are determined by the frequency of re
tive collisions, calculated for the assumed Maxwellian velo
ity distributions of colliding particles. The rate of the the
mally activated reaction includes the Arrhenius fac
following from the barrier of activation energyE* , and the
steric factorsr related to the probability of reaction impose
by the independent, steric condition. The transition rate foT
due to chemical reaction~1! with these conditions is given
by

Wr~T→T1DTr !5Vn2sS 4kT

pm D 1/2

sr expS 2
E*

kTD , ~8!

wheres denotes the total collisional cross section, andV is
the volume of the system. The exclusion correction of
order of 1/N!1 has been omitted in Eq.~8!.

It is convenient to introduce the complete transition fun
tion w, which includes bothwe for continuous transitionsDT
due to the heat exchange andWr for fixed shiftsDTr related
to reaction

w~T→T1DT!5we~T→T1DT!1Wr~T→T1DTr !

3d~DT2DTr !. ~9!

Using this complete transition function defined for the co
tinuous variableDT, the master equation for the distributio
function of temperature in the thermochemical system m
be cast in the following form:

]

]t
P~T,t !5E

DT,T
d~DT!P~T2DT,t !w~T2DT→T!

2P~T,t ! E
DT.2T

d~DT!w~T→T1DT!.

~10!

The limits of the integrals in Eq.~10!, imposed by the con-
dition of positive temperatures, are rather formal aswe is
extremely small forDT;T,Tw . The above master equatio
provides a well-founded ground to study fluctuations in t
Semenov system, however, its complicated integ
differential form makes hopeless any more rigorous anal
cal treatment. We study the stochastic effects in the ther
chemical system by means of Monte Carlo simulatio
appropriately based on Eq.~10!. These mesoscopic resul
are verified by comparison with the simulations of the
luted gas system at the microscopic level, in which the
locity of each individual particle is followed.

III. METHODS OF MONTE CARLO SIMULATIONS

Monte Carlo~MC! simulations provide a convenient a
ternative approach when analytical results are not availa
The simulation method of stochastic dynamics governed b
8-3
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B. NOWAKOWSKI AND A. LEMARCHAND PHYSICAL REVIEW E 64 061108
master equation for discrete populations of chemical spe
is well founded@19#. However, it must be generalized here
the case of Eq.~10! which involves a continuous spectru
for temperature transitions due to the Newtonian heat
change. Extending the standard approach, one may trea
integral overDT in Eq. ~10! as a limit of sums over finite
intervalsd(DT). In this sense,DT is a continuous paramete
for a variety of thermal processes, each with a specific fi
temperature changeDT.

The simulation algorithm relies on the rule for generati
of a single elementary transition, in which the system pas
from an initial temperatureT at time t to a final T1DT
reached att1Dt. The total transition rate from the initia
state is

Wtot~T!5E d~DT!w~T→T1DT!5SsanS kT

2pmD 1/2

1Vn2sS 4kT

pm D 1/2

sr expS 2
E*

kTD , ~11!

where the first term results from the Newtonian heat
change and the second one from the exothermal reac
Accordingly, the waiting time to exit from the state wit
temperatureT is Dt51/Wtot(T), or more exactly, it may
be sampled from the exponential distributio
Wtot(T)exp@2Wtot(T)Dt# characteristic for the Markovian
processes@20#. While time is incremented byDt, a process
effective for the transition is chosen with the probability pr
portional to its contribution to the total transition rate giv
in Eq. ~11!. Thus, the chance to select the reaction
Wr /Wtot , similar to the standard method@19#, and the asso-
ciated temperature increment isDTr .

The selection of a transfer process related to the New
ian heat exchange means a choice of temperature changDT
sampled according to the continuous transition functionwe
given by Eq.~6!. To make the sampling easier, we can not
thatwe consists of two branches, one for positive and one
negativeDT; further, each of these two branches is a co
bination of the easy-for-sampling probability distributio
exp(2x) andx exp(2x) for x;uDTu. Using this partition in
four ~in total! functions, a two-step sampling following from
the decomposition of probability distributionwe(DT)/Wtot
is easily applied. First, one of the four cases is selected w
the probabilitygi , which is the weight it contributes toWtot ,
and subsequently,DT is sampled from the correspondin
normalized probability distributionpi(DT). Equation ~6!
yields the following probabilitiesgi and distributionspi of
DT: For DT,0,

g15SsanS kT

2pmD 1/2 2T2Tw

~T1Tw!3/Wtot , ~12!

p1~x!5exp~2x!, x5

3
2 NuDTu

T
,

g25SsanS kT

2pmD 1/2 T2

~T1Tw!2Y Wtot ,
06110
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p2~x!5x exp~2x!, x5

3
2 NuDTu

T
.

For DT.0,

g35SsanS kT

2pmD 1/2 2TTw
2

~T1Tw!3Y Wtot ,

p3~x!5exp~2x!, x5

3
2 NDT

Tw
,

g45SsanS kT

2pmD 1/2 Tw
2

~T1Tw!2Y Wtot ,

p4~x!5x exp~2x!, x5

3
2 NDT

Tw
. ~13!

The next transition is generated starting from the upda
temperatureT85T1DT at current timet85t1Dt, and the
sequence of transitions forms then a stochastic trajector
T(t). The averages are calculated for ensembles of such
jectories.

The validity of the simulation results based on the mas
equation are examined by comparing with simulations of
dynamics at the microscopic level. We use the direct sim
lation Monte Carlo~DSMC! method developed by Bird@21#
to simulate the evolution of the diluted gas system. In
homogeneous system, the positions of the particles may
disregarded, and their velocities are the only relevant v
ables. The form of the Boltzmann collision integral implie
the rule of selection@21# of random (1/2)Vn2s^uvk2vl u&Dt
pairs of particles (k,l ) colliding in a time stepDt shorter
than the mean time of free flight. We employ the molecu
model of reactive hard spheres, widely used in microsco
simulations@22,23# and kinetic theory studies@24–26# of
chemical systems. The total cross sections5pd2 is the
same as for hard spheres with diameterd, but a part of it is
connected with reaction. A collision is reactive~i! with the
probability given by the steric factorsr , and~ii ! if the rela-
tive velocity (vk2vl) along the direction connecting cente
of particlesk,l at impact exceeds a certain threshold va
g* . The frequency of reactive collisions in this line-o
centers model is given by Eq.~8! with the activation energy
E* 5(1/2)mg* 2, wherem5m/2 is the reduced mass. After
reactive collision, the kinetic energy of the particles that
acted is increased by the value of the reaction heatQ. In
generation of collisions of particles with the system boun
aries, we assume that the container is cubic, and so collis
with the walls inx, y, andz directions are chosen with equa
probability. Treating the container walls just like an imm
bile target with a cross sectionS, random (1/3)nŜ uvxu&Dt
particles are selected to collide with the surface normal to
x direction, and analogously for the two other orientatio
Particles hitting the walls are either specularly reflected
thermally accommodated with the probabilitysa . In fact, we
neglect collisions with elastic reflection, because they do
have any thermal effect nor contribute to Maxwellization
8-4
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the particle velocity distribution. Velocities of particles em
ted after thermal accomodation are sampled from the n
malized biased Maxwellian distribution given in Eq.~3! ap-
propriate for collision direction.

Before proceeding to a description of the simulation
sults, we consider in more detail the properties of the dyna
ics of the thermochemical Semenov system. In particular,
are looking for the conditions in which considerable stoch
tic effects may be expected.

IV. REGIMES OF SYSTEM DYNAMICS

The features of the dynamics are easily captured in
framework of the deterministic description, which involv
only the average rates of energy transitions. Heat produc
by the exothermal reaction~1! in the bulk yields a source
term in the energy balance equation. The average freque
of reactive collisions gives the following rate of heat relea

K S dE
dt D

r
L 5QVn2sS 4kT

m D 1/2

sr expS 2
E*

kTD . ~14!

The term related to the energy exchange with the thermo
is given by the average net energy flux at the wall surfa
The average heat outflux accommodated on the walls of
container is calculated by means of the particle velocity d
tribution for temperatureT of the system

^JE&out52SsanE
vx.0

mv2

2
vxS m

2pkTD 3/2

expS 2
mv2

2kTDdv

52SsanS 2kT

pm D 1/2

kT. ~15!

Similarly, the heat influx to the system is obtained from t
velocity distribution at temperatureTw for particles emitted
from the wall after accommodation

^JE& in5SsanwE
vx,0

mv2

2
uvxuS m

2pkTw
D 3/2

expS 2
mv2

2kTw
Ddv

5SsanwS 2kTw

pm D 1/2

kTw . ~16!

Concentrationnw in the distribution for emitted particle
given in Eq.~16! is determined by the condition of vanishin
of the mass flux. Equation̂vx&out1^vx& in50 with the ve-
locity distributions specific for the incident and emitted mo
ecules results in the following relation:

n~kT!1/25nw~kTw!1/2. ~17!

The source term~14! and the exchange terms~15! and ~16!,
subject to condition~17!, yield the following deterministic
equation of energy balance:
06110
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dE
dt

5nsS 4kT

pm D 1/2S QVnsr expS 2
E*

kTD
2

1

A2s
Ssak~T2Tw!D . ~18!

As in the stochastic description, it is useful to introduce te
perature instead of energy of the system. Convenient dim
sionless thermal variables may be defined by

u5T/Tw , ~19!

«5E* /kTw , ~20!

and

q5Q/kTw . ~21!

Hereafter, we also use the dimensionless time scale

t4nssr S kTw

pmD 1/2 Q

kTw
→t. ~22!

Substitutions~19!–~21! and~22! reduce the number of inde
pendent relevant parameters. The deterministic equatio
terms of the dimensionless variables has the following fo

du

dt
5

1

3
AuS expS 2

«

u D2g~u21! D . ~23!

This equation involves only two parameters: the activat
energy« and the reduced coefficient for the Newtonian he
exchange

g5
Sl

V

kTw

Q

sa

sr
, ~24!

wherel5(A2ns)21 denotes the molecular mean free pa
Parameterg gives some measure of the efficiency of Ne
tonian cooling with respect to heat production by the ex
thermal reaction. The prefactorAu of the two terms in Eq.
~23! appears because the kinetic theory calculation rev
that the collision rates depend on the square root of temp
ture @16#. In the standard macroscopic description of the S
menov model, this weak dependence onAu is omitted but it
has already been included in previous microscopic tre
ments of thermochemical systems@17,12,13#.

Equation~23! may also be obtained from the stochas
description. Using the master equation given in Eq.~10!, the
evolution of the average scaled temperature^u& is given by

d

dt
^u&5E

u.0
duE

Du,u
d~Du!P~u2Du,t !w~u2Du→u!u

2E
u.0

duP~u,t ! E
Du.2u

d~Du!w~u→u1Du!u.

~25!
8-5
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B. NOWAKOWSKI AND A. LEMARCHAND PHYSICAL REVIEW E 64 061108
After the change of variableu85u2Du in the gain term,
Eq. ~25! may be transformed into

d

dt
^u&5E

u.0
duP~u,t !E

Du.2u
d~Du!w~u→u1Du!

3@~u1Du!2u#. ~26!

The deterministic dynamics is obtained by admitting that
probability distribution is extremely narrow so that the a
proximationP(u,t);d(u2^u&) may be used. It reads

d

dt
^u&5E

Du.2u
d~Du!w~^u&→^u&1Du!Du. ~27!

Using Eqs.~6!, ~8!, and ~9! for the transition rate, and per
forming integration overDu, we obtain Eq.~23!.

The schematic plot in Fig. 1 explains the well-know
qualitative features@14,27,28# of the solution of determinis-
tic Eq. ~23!. The regime of the deterministic dynamics d
pends on the relation between the production of reaction
and the Newtonian cooling, given by the first and seco
term of the right side of Eq.~23!, respectively. The line
g(u21) and the curve exp(2«/u) may have either one o
three intersection points@14# which correspond to the sta
tionary solutions of Eq.~23!. Thus, the system has either
unique stable steady state or two stable states separated
unstable one. The bistability arises and vanishes at the b
cation points, at which the lineg(u21) becomes tangentia
to exp(2«/u) at someub . For a given«, this condition yields
the following critical values ofg:

gc
65

1

4
«S 16A12

4

« D 2

expF2
1

2
«S 16A12

4

« D G .
~28!

FIG. 1. The two terms of the right-hand side of the determinis
Eq. ~23!: exp(2«/u) for «54.5, and the lineg(u21) for ~a! g
50.095 and~b! g50.1066. In case~a!, the single intersection poin
of the two curves gives the unique stable state on the combus
branch. In case~b!, there are three intersection points, the two e
treme ones represent the stable stationary solutions~bistability!,
while the intermediate one corresponds to the unstable state.
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Bistability may appear only if«.4, in the range ofg
bounded by the critical values,gc

1,g,gc
2 . For higher val-

ues,g.gc
2 , the system evolves at a moderate rate toward

single stationary temperature that lies on the extinct
~lower! branch of the steady states. The opposite, belo
bistability domaing,gc

1 is the explosion region: the tem
perature of the system grows in a characteristic, explos
manner and reaches the stable steady stateus on the combus-
tion ~upper! branch.

V. STOCHASTIC EFFECTS IN THE EXPLOSIVE REGIME

Stochastic effects are manifested most prominently in
gimes sensitive to even small perturbations, such as the
cinity of bifurcations @1,4#. Fluctuation-induced transition
between stable states in bistable systems@2,34# are widely
studied stochastic phenomena of this kind. Less attention
been attracted by effects that may arise when system dyn
ics is in the vicinity of a bifurcation, but still in a monostab
regime. This is the case we are interested in the presen
per: we study the dynamics of the Semenov system forug
2gc

1u!g, though in the regiong,gc
1 below the bistability

domain. As the system evolves from the initial conditio
u(0)51, the temperature increases, attracted by the un
stationary state on the combustion branch. However, the
of this growth drastically falls down when the system pas
through the region ofu where the two curves in Fig. 1 com
nearly to the tangential point corresponding to bifurcation.
this instant, the right-hand side of Eq.~23! reaches the ex-
treme, smallest values of the minimum, which is scaled
the small parameterug2gc

1u. The system passes then th
induction stage, at which the dynamics ofu(t) is governed
within the long-time interval by a slow mode. The charact
istic violent evolution at the explosive stage comes only a
the system has crossed the induction barrier. The effect
fluctuations on the system dynamics are the strongest in
induction period, when the deterministic trend is relative
the weakest. Stochastic properties of explosive thermoche
cal systems have been considered in theoretical@9,29# and
experimental@30# works. In this paper on the features o
stochastic explosive dynamics, we examine the validity
the master equation given by Eq.~10!, which includes the
specific term for the Newtonian cooling. In particular, w
wish to check the predictions based on Eq.~10! by compar-
ing them with the results of microscopic DSMC simulation

We study the explosive system for«54.5, q55, andg
50.096, close to the bifurcation pointgc

150.09957, . . . , for
this «. These parameters determine completely the con
tions of the deterministic and stochastic dynamics. In
microscopic simulations, we take the lengthL of the cubic
container equal to 2l; this fixes the geometrical factor ing
and consequently only one of the probability factors, let
choosesr , is left as an independent parameter that scales
rates of the bulk and surface thermal processes. The rea
steric factorsr should be small in order to ensure that rea
tive collisions are relatively rare, so that dominant elas
collisions are enough effective to restore the Maxwelli
form of the velocity distribution function.
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Figure 2 depictsu(t) calculated from the deterministi
Eq. ~23! and two examples of stochastic trajectories obtain
from the MC simulations based on the master equation.
long induction stage with its characteristic very slow evo
tion can be easily identified. The duration of the inducti
period diverges in the vicinity of the bifurcation point simila
to ugc2gu21/2 @9,31#. This slow mode is abruptly terminate
as the system reaches the next, ignition stage, to which
responds the steep slope ofu(t) demonstrating the violen
increase of temperature. The high temperatures attaine
the final, saturation stage may be not completely realis
because the Semenov assumption of maintaining cons
reagent concentration is likely to fail for fast reactions
high u. Nevertheless, the model is useful to examine
description of fluctuations derived here in the Newton
heat exchange. Moreover, our interest is mostly confined
the stochastic effects appearing at relatively low tempe
tures, at which the crossover from the induction to the ig
tion stage occurs. The slow deterministic dynamics in
induction period creates the most favorable conditions
development of significant fluctuation effects.

Figure 2 shows that even small fluctuation-induced dev
tions from the deterministic trajectory at the induction sta
may result in a large dispersion of times at which the ignit
temperature is reached. An approximate calculation may
used to evaluate the spread of stochastic trajectories ar
the deterministic~mean! value in the induction period. The
following equations for the moments of the distribution fun
tion are easily derived from Eq.~10! in the same way as Eq
~26! for the mean temperature

d

dt
^uk~ t !&5E duP~u,t !E d~Du!w~u→u1Du!

3@~u1Du!k2uk#. ~29!

In comparison toP, the transition ratew is a slowly varying
function of u and may be evaluated using the instantane

FIG. 2. Temperatureu as a function of time for the explosiv
system with«54.5 andg50.096. The solid line shows the solutio
of the deterministic Eq.~23!, and the dashed lines give two ex
amples of simulation results based on the master equation, foN
510 000. The dashed-dotted line is a linear fit foru(t) at the in-
duction stage.
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mean valuê u(t)&. Equation~29! yields then the following
equation for the dispersion of stochastic trajectories aro
the mean value:

d

dt
~^u2~ t !&2^u~ t !&2!5E d~Du!w~^u&→^u&1Du!~Du!2.

~30!

Further approximation may be applied in the induction p
riod, because the temperature remains then nearly con
and the right-hand side of Eq.~30! may be evaluated at a
mean valueū in this time interval. Thus, Eq.~30! describes
the diffusive spreading ofu around the mean valuêu& ac-
cording to

d

dt
^~u2^u&!2&52D ū , ~31!

where the time-independent diffusion coefficient is calc
lated using the transition rate given in Eq.~9!. It reads,

D ū5
1

9N
Aū@g~324ū13ū2!1qe2«/ ū#. ~32!

If the induction period lasts for timetn , then the final mean
deviation from the deterministic temperature in this time
terval reaches the valueDun5A2D ūtn. Even a small uncer-
tainty Dun may result in a relatively large dispersionDtg of
times at which the system attains the ignition temperatureug
and undergoes switching to the explosive evolution. This a
plification effect of small stochastic perturbations is relat
to the slow dynamics at the induction stage. The spread
ignition times may be estimated on the basis of a simplifi
dynamics@32#. Let us approximate the deterministic traje
tory at the induction stage by the linear growth ofu(t) with
a characteristic small slope~cf. Fig. 2!. At the induction pe-
riod, temperature increases fromu0 to the ignition tempera-
tureug during the timetn , so the slope ofu(t) in this region
is a5(ug2u0)/tn . The dispersion of ignition times ma
then be evaluated as follows:

Dtg5Dun /a5F 2

9N
Aū„g~324ū13ū2!1qe2«/ ū

…G1/2

3tn
3/2/~ug2u0!, ~33!

where the diffusive spreadDun is calculated using the diffu-
sion coefficient given in Eq.~32!. The predictions of this
equations, in particular the scaling law 1/Dtg;AN, may be
examined by the numerical results for the reciprocal 1/Dtg in
Fig. 3, obtained from the MC simulations for systems w
various particle numbersN. From Fig. 2, we evaluateu0

51.25, ug51.75, ū51.5, andtn5550. Equation~32! then
yields Dn'0.0833/N, and relation~33! results in the scaling
1/Dtg'9.531025AN. This rough evaluation is in very goo
agreement with the fit 1/Dtg59.931025AN obtained from
the MC results in Fig. 3. More exact statistics of ignitio
times could be calculated from the backward master equa
@33#, but it has a complicated integro-differential form sim
8-7
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B. NOWAKOWSKI AND A. LEMARCHAND PHYSICAL REVIEW E 64 061108
lar to Eq. ~10!. Figure 3 displays also the results of micr
scopic DSMC simulations obtained for the reaction ste
factor sr50.01. The DSMC data agree with the correspon
ing results based on the master equation. Effectiveness o
microscopic simulations decreases in comparison to the
soscopic simulations as the probability of inelastic collisio
becomes smaller, since both elastic and reactive collis
must be generated in the microscopic approach. This
vented us from reaching in the DSMC simulations the ran
of such largeN as in the mesoscopic treatment.

In order to study the peculiarity of the temperature dis
bution during the ignition process, we present in Figs. 4 a

FIG. 3. Reciprocal 1/Dtg of the standard deviation for ignition
time, Dtg5A^tg

2&2^tg&
2, for systems with various particle numbe

N. The squares show the results of MC simulations based on
master equation, the triangles depict the data obtained from
microscopic DSMC simulations for the following parameter valu
reduced activation energy«54.5, Newtonien exchange coefficien
g50.096, reduced heat releaseq55, reaction steric factorsr

50.01, ratio of mean free path and length of the systeml/L50.5.
The dashed-dotted line is a linear fit of 1/Dtg .

FIG. 4. Standard deviation of temperature distributionsu

5A^u2&2^u&2 scaled to the mean value^u& as a function of time.
The solid lines from uppermost to lowermost show results of
MC simulations of the master equation for systems with the follo
ing particle numbersN5100,500,2000,10 000,50 000,1 250 00
The dashed line gives the data from microscopic DSMC simu
tions for N5 2000 and the same parameter values as in Fig. 3
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5 the evolution of quantities related to the second and th
central moments ofP(u,t), respectively, for systems with
various particle numbersN. The results are divided by
^u(t)&, because Eq.~32! implies the relationDu;u2 as a
rough approximation for the dependence of temperature
persion onu. Due to the choice of the very low-reactio
steric factorsr50.01, only the results forN52000 particles
have been available for us in the microscopic DSMC sim
lations, and these data agree very well with the results of
mesoscopic approach. For a system in a monostable reg
the method of large volume expansion@34# predicts that a
distribution function of stochastic variable has the Gauss
shape~with a time-dependent dispersion! around a determin-
istic solution. Figure 4 shows that the dispersion increase
the ignition stage, what may be explained by the stretch
of the temperature distribution by the fast dynamics in t
period. However, the third central moment ofP displayed in
Fig. 5 does not remain always small, as it should for
approximately Gaussian distribution, but during the igniti
period, it increases up to abnormally high values and is q
comparable to the dispersion. This effect evidently revea
large deviation from the expected Gaussian shape of the
tribution. It arises because the high-temperature tail of
distribution is extended by the fast dynamics in the igniti
region. Considering the statistical ensemble at a certain
ment in the induction period, it is easy to imagine that wh
most of the systems still remain in the induction stage, so
of them reach the ignition temperature earlier and rapi
move away from the mainstream due to a fast tempera
increase at the ignition stage. This high-temperature tail
sults in an asymmetry of the distribution, which is seen
Fig. 5 as a prominent positive value of the third central m
ment of the distribution.

Figure 6 displays the mean deviation of temperaturet
5650 as a function of numberN of particles in the system
According to the deterministic evolution depicted in Fig.
for this t, the system is about to finish the induction stag
For large systems, the data in Fig. 6 follow the scali
su /^u&;1/AN, consistent with the Gaussian form of the di

he
he
:

e
-

-

FIG. 5. Third central moment of temperature distribution^(u
2^u&)3&1/3 scaled to the mean valuêu& as a function of time.
Same notation and parameter values as in Fig. 4.
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tribution. However, the deviation from this asymptotic la
develops abruptly beginning from 1/AN'0.006. For thisN
'33104, Fig. 3 gives the dispersion of ignition timesDtg
'60, so that some systems of the ensemble evolve alre
according to the advanced timet85t1Dtg5710. This is ap-
proximately the moment that the deterministic solution
Fig. 2 begins the ignition stage. Thus, att5650, the upper
limit of temperature distribution forN'33104 attains the
ignition temperature and the high-temperature tail is form
due to the stretching by the fast ignition dynamics. Since
extension of the high-temperature part of distribution
eventually terminated by attraction of the ‘‘probability mas
to the unique stationary state, such evolution may resul
the transient bimodality of the distribution function@35–
37,29#; two maxima ofP may temporarily coexist, one cor
responding to the usual concentration around the determ
tic solution at the induction stage and the other one relate
the single dynamics’ attractor that gathers the systems
already passed the ignition stage. Such a specific effect
arise only if mean deviation of ignition times is larger th
half the duration of the ignition stage. The deterministic s
lution in Fig. 2 gives for the latter onetg'250, and then Fig.
3 shows that the transient bimodality develops for syste
with N,6000.

The bimodality of the distribution may be demonstrat
using the approximate distribution function, obtained by a
eragingP within several intervals

P̄i~ t !5
1

u i2u i 21
E

u i 21

u i
P~u,t !du. ~34!

If the intervals cover fromu0 to u i max
, the whole range ofu,

such defined function$P̄i(t)% i 51, . . . ,i max
gives a useful ap-

proximation for the full P(u,t). The distribution function

FIG. 6. Scaled standard deviation of temperature distribu
su /^u& at t5650 for systems with various particle numbersN. The
squares represent the results of the MC simulations based on
master equation and the cross shows the data obtained from
microscopic simulations. The dashed-dotted line is a linear fit
the scalingsu /^u&;1/AN, calculated forN>50 000. Same param
eter values as in Fig. 3.
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given in Eq.~34! may be calculated with a relatively goo
accuracy on the basis of a much smaller statistical ensem
than that necessary to obtain the detailed form ofP(u,t).
The following limits of the intervals are suitable to show th
bimodality of the distribution function during the ignitio
process:~i! from u051 to u152.25 for the range ofu at the
induction stage,~ii ! from u1 to u255.25 for the region
passed during the ignition period, and~iii ! from u2 up to
u356.3 for the domain around the stable steady state aus
'5.7856. Figure 7 displays such interval-averaged distri
tion function P̄ for a system withN52000 particles, at four
times close to the mean ignition time. The bimodal form
the distribution function clearly arises for intermediate time
before the final collapse of the ‘‘probability mass’’ onto th
unique attractorus . Worth to note in Fig. 7 is the very goo
agreement between the results of the mesoscopic simula
and the data obtained from simulations at the microsco
level for sr50.01. This provides us a valuable confirmatio
of the validity of the developed mesoscopic treatment,
cause the shape of the distribution function~even the ap-
proximate one! is a sensitive test in calculation of stochas
variables.

VI. CONCLUSIONS

We have developed the mesoscopic description of a t
mochemical gaseous system subject to the Newtonian
exchange between the homogeneous system interior an
walls thermostated by the external medium. It is based on
master equation including the term for stochastic ene
transfer, derived from the statistics of inelastic collisions b
tween gas particles and the thermostated walls. This tra
tion rate takes into account the continuous spectrum of
ergy transferred in the Newtonian heat exchange, un
transition functions for discrete populations of species
standard reaction-diffusion master equations. Conseque
the stochastic equation for the thermochemical system h

n

the
the
r

FIG. 7. Interval-averaged distribution function of temperatu
~34! at various times for the system withN52000 particles. The
solid lines depict the results of the MC simulations based on
master equation, and the dashed lines show the data obtained
the DSMC microscopic simulations for the same parameter va
as in Fig. 3.
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complicated integro-differential form, making hopeless a
more rigorous analytical solutions. In order to treat this m
ter equation for the continuous stochastic variable, we
tended the method of Monte Carlo simulations developed
discrete variables in reaction-diffusion processes.

We considered in detail the Semenov thermochem
model in the explosive regime; in particular, we investiga
the stochastic effects in the ignition process. We calcula
the dispersion of ignition times and two moments of t
temperature distribution function that demonstrate the pe
liarity of the stochastic evolution of the explosive syste
The developed mesoscopic treatment of thermochemical
tems allowed us to study such a subtle stochastic effect s
ys

dv

.

Ki
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as transient bimodality of the temperature distribution fun
tion. The good agreement between the results deduced
the Monte Carlo simulations of the master equation and fr
the direct simulations of the microscopic particle dynam
confirms the validity of the presented mesoscopic desc
tion.
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